
WEB GUI DEVELOPMENT AND INTEGRATION IN LIBERA 
INSTRUMENTATION

D. Bisiach, M. Cargnelutti, P. Leban, P. Paglovec, L. Rahne, M. Škabar, A. Vigali 

Instrumentation Technologies doo, Solkan, Slovenia

THPV009

INTRODUCTION AND 
APPLICATION LAYER

• Allows communication 
between the instrument and 
the Software layer

• Exposes the application nodes 
through the Machine Control 
Interface (MCI)

• APIs provide high level 
accessibility

HTTP APPLICATION 
ARCHITECTURE BASED ON 
REST API

• Exposes the instrument 
SW to the network using 
HTTP API

• Integrated in the local 
network 

• Perform trobuleshooting 
in an easier and more 
efficient way

12 CHANNEL LIBERA CURRENT 
METER IMPLEMENTATION, 
RESULTS AND CONCLUSIONS

WEBSOCKET

• High performance on data streaming thanks to full duplex communication interface
• Introduced to meet the high demanding requirements on data streaming, minimum 

latency and system reliability 



WEB GUI DEVELOPMENT AND INTEGRATION IN LIBERA 
INSTRUMENTATION

D. Bisiach, M. Cargnelutti, P. Leban, P. Paglovec, L. Rahne, M. Škabar, A. Vigali 

Instrumentation Technologies doo, Solkan, Slovenia

THPV009

Figure 1: Application stack layer

INTERFACE BETWEEN INSTRUMENT AND 

APPLICATION SOFTWARE
The access to the setting and the data provided by the instrument is allowed by the software

structure reported in Fig.1. The lower layer is tightly bonded to the hardware interface and is

responsible to communicate at a lower level with the FPGA and the CPU processes. The second

layer called Machine Control Interface (MCI) connects all the user interfaces by providing APIs

that enable the servers to access the configuration parameters, the status information, and the data

acquired by the instrument.

ABSTRACT
During the past 5 years, Instrumentation Technologies expanded and added to the embedded OS

running on Libera instruments (beam position instrumentation, LLRF) a lot of data access

interfaces to allow faster access to the signals retrieved by the instrument. Some of the access

interfaces are strictly related to the user environment Machine control system (Epics/Tango), and

others are related to the user software preferences (Matlab/Python). In the last years, the

requirement for easier data streaming was raised to allow easier data access using PC and mobile

phones through a web browser. This paper aims to present the development of the web backend

server and the realization of a web frontend capable to process the data retrieved by the

instrument. A use-case will be presented, the realization of the Libera Current Meter Web GUI as a

first development example of a Web GUI interface for a Libera instrument and the starting point

for the Web GUI pipeline integration on other instruments. The HTTP access interface will

become in the next years a standard in data access for Libera instrumentation for quick

testing/diagnostics and will allow the final user to customize it autonomously.



THPV009

Figure 2: Access to the instrument in a local network

HTTP APPLICATION ARCHITECTURE BASED ON 

REST API
A typical use case is reported in Fig. 2 where the instrument is accessible using the wired and

wireless network.

The system architecture is based on the REpresentational State Transfer (REST) software

architectural style and provides the services through Application Programming Interfaces (API)

that allow the programmer to easily implement access to the instrument internal interfaces.

The requests are performed on the client-side by sending desired parameters in JSON format to

the REST API. The server will then return the requested node in JSON format that will be

processed by the client and presented in a human-readable format on the WebGUI.

Figure 3, Figure 4: HTTP REST API application architecture.



THPV009

HTTP APPLICATION ARCHITECTURE BASED ON 

WEBSOCKET
An additional high-performance interface based on WebSocket technology was integrated into

the Libera software.

The interface is compliant with the RFC 6455 and compatible with the HTTP protocol by

allowing a full-duplex communication between the client and the server running without the need

to re-establish the communication at every request but by keeping it open to facilitate the real-time

data transfer and data streaming over TCP. Fig.5 reports the architecture implemented with the

WebSocket architecture:

EXTENSION AND CUSTOMISATION OF THE HTTP 

USER INTERFACE: DEVELOPMENT AND 

INTEGRATION OF A 12 CHANNEL CURRENT 

METER 

The realization of the 12 Channel Current Meter GUI interface was one very extensive

customization of the user software that consisted in the implementation of really demanding

features listed below:

1. Capability to perform calculations on the data ac-quired such as mean values and standard

deviation for the acquired signals.

2. Continuous backup of the acquired data in .csv file format.

3. Integrate the data acquisition from 3 independent 4-channel acquisition instruments in a 12

channel device.

4. The ability of the WebGUI to run smoothly for one month operation, without any loss of data

and by keeping the measurement going during the operation.

Figure 5: Access to the instrument using WebSocket Figure 6: 12 Channel Libera Current Meter implementation.



THPV009

The decision was to implement all the communication based on WebSockets.

All the 3 integrated instruments are acting as an independent device with 12 channels by keeping

also the synchronization constant without acquisition timing drift between the 12 channels.

The resulting WebGUI is reported in the image below:

RESULTS AND CONCLUSIONS

The development of an HTTP REST API and Web-Socket interfaces required a lot of effort in

terms of system implementation, integration, testing, and debugging. One of the main benefits is

that such a system can be easily accessed by any final user without the need for any control system

software (EPICS, TANGO) or proprietary software (Matlab, Labview) already running on the data

acquisition system. These features made it very reliable and the first choice of use during system

troubleshooting and installation.

The other benefit was to introduce high scalability of the interface: many instruments can benefit

from this implementation since the HTTP server is available as a quick add-on for all the Libera

instruments with minimal effort dedicated to porting. The performance of the WebSockets can

make a difference when a large amount of data need to be retrieved from the instrument.

Figure 7: Libera 12 Channel Current Meter WebGUI


